Resonance Theory for Schrödinger Operators

نویسندگان

  • J. L. Lebowitz
  • Costin
  • A. Soffer
  • O. Costin
چکیده

Resonances which result from perturbation of embedded eigenvalues are studied by time dependent methods. A general theory is developed, with new and weaker conditions, allowing for perturbations of threshold eigenvalues and relaxed Fermi Golden rule. The exponential decay rate of resonances is addressed; its uniqueness in the time dependent picture is shown is certain cases. The relation to the existence of meromorphic continuation of the properly weighted Green’s function to time dependent resonance is further elucidated, by giving an equivalent time dependent asymptotic expansion of the solutions of the Schrödinger equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low energy spectral and scattering theory for relativistic Schrödinger operators

Spectral and scattering theory at low energy for the relativistic Schrödinger operator are investigated. Some striking properties at thresholds of this operator are exhibited, as for example the absence of 0-energy resonance. Low energy behavior of the wave operators and of the scattering operator are studied, and stationary expressions in terms of generalized eigenfunctions are proved for the ...

متن کامل

The Resonance Counting Function for Schrödinger Operators with Generic Potentials

We show that the resonance counting function for a Schrödinger operator has maximal order of growth for generic sets of real-valued, or complex-valued, L∞-compactly supported potentials.

متن کامل

Spectral Multipliers for Schrödinger Operators with Pöschl-teller Potential

Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...

متن کامل

Multidimensional Schrödinger Operators and Spectral Theory

Here we present some fundamental theorems of Schrödinger operators and their spectral theory.

متن کامل

Inverse uniqueness results for Schrödinger operators using de Branges theory

We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000